

PROGRAMMABLE TRANSDUCER  
OF DC CURRENT AND DC VOLTAGE SIGNALS  
**P20H**



USER'S MANUAL



## Contents:

---

|                                                                  |           |
|------------------------------------------------------------------|-----------|
| <b>1. APPLICATION .....</b>                                      | <b>5</b>  |
| <b>2. TRANSDUCER SET .....</b>                                   | <b>5</b>  |
| <b>3. OPERATIONAL SAFETY .....</b>                               | <b>6</b>  |
| <b>4. INSTALLATION .....</b>                                     | <b>7</b>  |
| 4.1. Fixing Way .....                                            | 7         |
| 4.2. External Connection Diagrams .....                          | 7         |
| <b>5. SERVICE .....</b>                                          | <b>9</b>  |
| 5.1. Transducer Configuration by Means of the eCon Program ..... | 10        |
| 5.2. Register Map (in option with RS-485 Interface) .....        | 10        |
| 5.3. Manufacturer's Parameters .....                             | 14        |
| <b>6. TECHNICAL DATA .....</b>                                   | <b>15</b> |
| <b>7. ORDERING CODES .....</b>                                   | <b>18</b> |



## 1. APPLICATION

---

Transducers of P20H series are applied for the continuous conversion of one quantity: high voltage or high current signal, uni or bipolar signal into a standard d.c. current or d.c. voltage signals, or into a digital form available through the RS-interface.

The transducer is configurable through the PD14 programmer. With the aid of the programmer and the ECon program, one can reprogram following parameters:

- measurement averaging time,
- conversion characteristic,
- preservation of the output signal at overflows,
- narrowing of the output signal,
- RS485 transmission parameters,

The transducer has a galvanic separation between individual blocks:

- supply
- measuring inputs
- outputs and PD14 programmer

## 2. TRANSDUCER SET

---

The transducer set is composed of:

- P20H transducer ..... 1 pc
- user's manual ..... 1 pc
- protection plug of the programmer socket .... 1 pc

When unpacking the transducer, please check whether the type and execution code on the data plate correspond to the order.

### 3. BASIC REQUIREMENTS, OPERATIONAL SAFETY

---

In the safety service scope, the transducer meets the requirements of the EN 61010-1 standard.



#### **Observations concerning the operational safety:**

- All operations concerning transport, installation, and commissioning as well as maintenance, must be carried out by qualified, skilled personnel, and national regulations for the prevention of accidents must be observed.
- The programming of P20H transducer parameters must be carried out after disconnecting measuring circuits.
- Before switching the transducer on, one must check the correctness of connections to the network.
- Do not connect the transducer to the network through an autotransformer.
- Before removing the transducer housing, one must switch the supply off and disconnect measuring circuits. The removal of the transducer housing during the guarantee contract period may cause its cancellation.
- The transducer is destined to be installed and used in electromagnetic industrial environment conditions.
- When connecting the supply, one must remember that a switch or a circuit-breaker should be installed in the building. This switch should be located near the device, easy accessible by the operator, and suitably marked as an element switching the meter off.
- Non-authorized removal of the housing, inappropriate use, incorrect installation or operation, create the risk of injury to personnel or transducer damage.



For more detailed information, please study the User's Manual.

## 4. INSTALLATION

### 4.1. Fixing Way

P20H transducers are destined to be fixed on a 35 mm rail acc. to EN 60715 standard.

Overall dimensions and the fixing way are presented on the fig. 1.

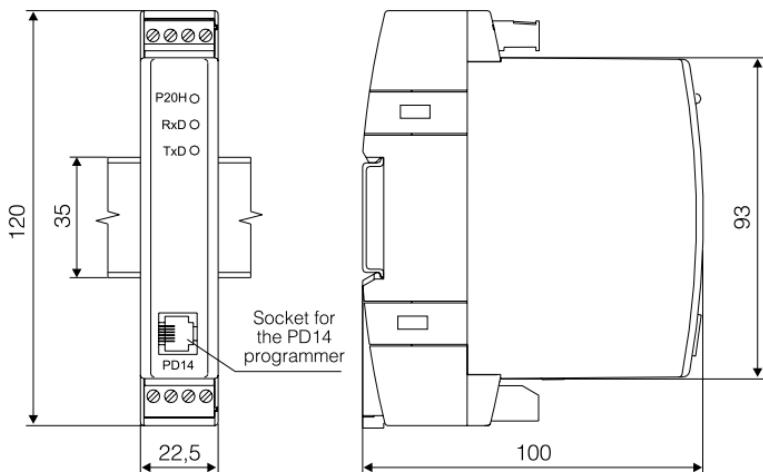



Fig. 1. Overall dimensions and fixing way of the P20H transducer

### 4.2. External Connection Diagrams

The transducer has a separable strip with screw terminals, which enable the connection of supply and output by  $2.5 \text{ mm}^2$  cross-section external wires. The connection of input signals must be carried out to inseparable screw terminals with wires of maximal  $1.5 \text{ mm}^2$  cross-section.

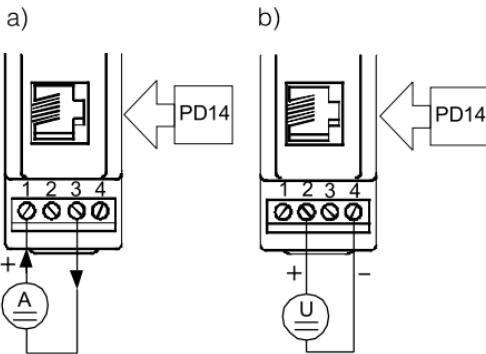



Fig. 2. Electrical connections of P20H transducer inputs.

a) voltage

b) current

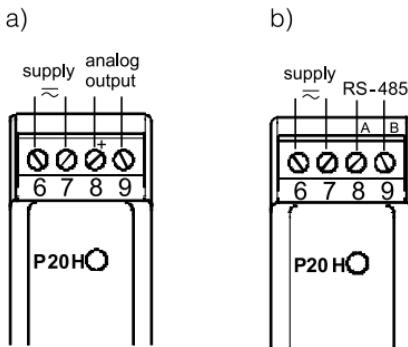



Fig. 3. Electrical connections of the P20U transducer supply and output:

a) with analog output,

b) with RS-485 interface

## 5. SERVICE

After switching the transducer on, the work state diode should light in red for a moment, next it should light in green.

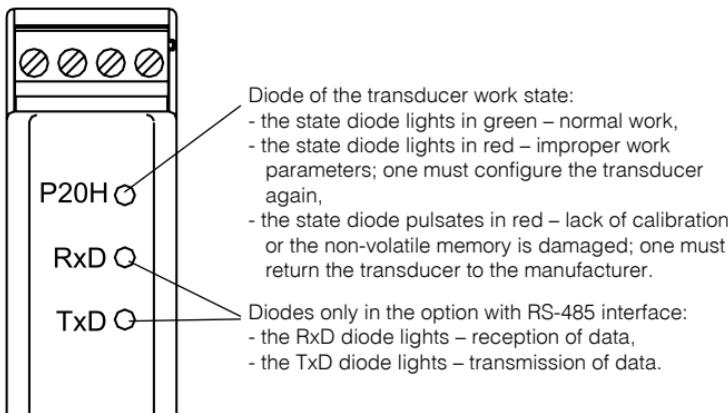



Fig. 4. View of the P20H transducer

The write confirmation in registers is signaled by a short extinction of the state diode. Till the time to obtain the required number of correct measurements (acc. to the table 1), the arithmetical mean value of measurements which have been doing so far, is converted. The measurement of values beyond the measuring range causes the overflow setting and begins the counting of correct measurements from the beginning. The measurement is carried out on the mowing window principle. The time is set up on 1 s by the manufacturer.

When the averaging time is less than 10 sec – the single measurement lasts ca 30 ms however, above 10 sec, the measurement lasts ca 0.5 sec.

Table 1

|                                 |      |      |      |      |    |     |     |     |     |     |
|---------------------------------|------|------|------|------|----|-----|-----|-----|-----|-----|
| Averaging time                  | 0.2s | 0.4s | 0.6s | 0.8s | 1s | 3s  | 5s  | 10s | 15s | 20s |
| Number of averaged measurements | 6    | 13   | 20   | 27   | 34 | 103 | 172 | 20  | 30  | 40  |

In the transducer, one can program the behaviour of the analog output (the recording of the output value in the option with RS-485) at overflows of the set up input measuring range.

Set up values: expected on the output at lower overflow (Out-d) for a value below the lower input overflow (In-d) and the expected value on the output at upper overflow (Out-u) for values above the upper input overflow (In-u) – Values are presented in the table 3.

## 5.1. Transducer Configuration by Means of the eCon Program

The free delivered eCon program, available at manufacturer's website, is destined for the P20H transducer configuration. In the option with RS-485 interface, the transducer can be configured directly through the interface. When configuring the transducer through the PD14 programmer, one must turn the RS-485 interface off.

## 5.2. Register Map (in option with RS-485 Interface)

Table 2

| Register address | Operation | Range   | Description                                                                                                         |
|------------------|-----------|---------|---------------------------------------------------------------------------------------------------------------------|
| 4000             | RW        | 0...9   | Averaging time: 0 – 0,2 s; 1 – 0,4 s; 2- 0,6 s; 3 – 0,8 s; 4 – 1 s; 5 - 3 s; 6 - 5 s; 7 - 10 s; 8 - 15 s; 9 - 20 s; |
| 4001             | RW        | 0...2   | Continuous output:<br>0 - normal work,<br>1 - value from the register 7602,<br>2- value from the register 7603      |
| 4002             | RW        | 0, 1    | Continuous output – overflow service:<br>0 – switched off, 1 – service                                              |
| 4003             | RW        | 1...247 | Address in MODBUS network                                                                                           |
| 4004             | RW        | 0...3   | Transmission mode: 0->8n2, 1->8e1,2->8o1, 3->8n1                                                                    |
| 4005             | RW        | 0...2   | Baud rate: 0->4800, 1->9600, 2->19200                                                                               |

|      |    |           |                                                          |
|------|----|-----------|----------------------------------------------------------|
| 4006 | RW | 0, 1      | Change parameters of the MODBUS transmission: 1 - change |
| 4007 | R  | 0...65535 | Status                                                   |
| 4008 | R  | 0         | Reserved                                                 |
| 4009 | R  | 0...65535 | Reserved                                                 |
| 4010 | R  | 0...65535 | Reserved                                                 |
| 4011 | R  | 0...65535 | Program version                                          |

## Opis rejestru status

### Bit – 15 Non-calibrated transducer

## 0 – measuring input of the calibrated transducer

## 1 – signaling of transducer input calibration lack

## Bit – 14 Error of transducer parameter values

### 0 – correct transducer parameters

## 1 – signaling of an incorrect transducer parameter readout

## Bit – 13 Signaling of an upper range overflow

0 – normal work

## 1 – range overflow

### **Bit – 12 Averaging state**

0 – a full interval of the measurement averaging time was elapsed  
1 – a full interval of the measurement averaging time was not elapsed

### **Bit - 11 – 7 Reserved**

### **Bit-6 – 3 measuring inputs**

| Bit 6 | Bit 5 | Bit 4 | Bit 3 | Meaning        |
|-------|-------|-------|-------|----------------|
| 0     | 0     | 0     | 0     | reserved       |
| 0     | 0     | 0     | 1     | -/+ 100 V d.c. |
| 0     | 0     | 1     | 0     | -/+ 250 V d.c. |
| 0     | 0     | 1     | 1     | -/+ 400 V d.c. |
| 0     | 1     | 0     | 0     | -/+ 1 A d.c.   |
| 0     | 1     | 0     | 1     | -/+ 5 A d.c.   |
| 0     | 1     | 1     | 0     | 0...100 V d.c. |
| 0     | 1     | 1     | 1     | 0...250 V d.c. |
| 1     | 0     | 0     | 0     | 0...400 V d.c. |

### **Bit - 2 – 0 Output**

| Bit 2 | Bit 1 | Bit 0 | Meaning                     |
|-------|-------|-------|-----------------------------|
| 0     | 0     | 0     | reserved                    |
| 0     | 0     | 1     | current output 0(4)...20 mA |
| 0     | 1     | 0     | current output 0(4)...20 mA |
| 0     | 1     | 1     | voltage output 0...10 V     |
| 1     | 0     | 0     | RS-485                      |

Table 3

| Register<br>2x16 bit<br>address | Register<br>32 bit<br>address | Opera-<br>tions | Description                                                                                                                                                                       |
|---------------------------------|-------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7200                            | 7600                          | RW              | Continuous output – lower input value (x1)                                                                                                                                        |
| 7202                            | 7601                          | RW              | Continuous output – upper input value (x2)                                                                                                                                        |
| 7204                            | 7602                          | RW              | Continuous output – lower output value (y1)                                                                                                                                       |
| 7206                            | 7603                          | RW              | Continuous output – upper output value (y2)                                                                                                                                       |
| 7208                            | 7604                          | RW              | Minimal input value                                                                                                                                                               |
| 7210                            | 7605                          | RW              | Maximal input value                                                                                                                                                               |
| 7212                            | 7606                          | RW              | Expected value on the output at lower overflow<br>Out-d                                                                                                                           |
| 7214                            | 7607                          | RW              | Expected value on the output at upper overflow<br>Out-u                                                                                                                           |
| 7216                            | 7608                          | R               | Measured value taking into consideration<br>registers 7604 and 7605<br>Reg. 7608 = reg. 7604 if reg. 7609 $\leq$ reg. 7604<br>Reg. 7608 = reg. 7605 if reg. 7609 $\geq$ reg. 7605 |
| 7218                            | 7609                          | R               | Measured value                                                                                                                                                                    |
| 7220                            | 7610                          | R               | Output value                                                                                                                                                                      |

### 5.3. Manufacturer's parameters

Table 4

| Parameter description                                                   | Range / Value                                                      | Manufacturer's value *                                                                        |
|-------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Averaging time                                                          | 0.2 s; 0.4 s; 0.6 s;<br>0.8 s; 1 s; 3 s; 5 s;<br>10 s; 15 s; 20 s; | 1 s                                                                                           |
| Continuous output:<br>working mode                                      | Normal work, output<br>minimum, output<br>maximum                  | Normal work                                                                                   |
| Continuous output:<br>transition characteristic:<br>(x1, y1) → (x2, y2) | -999999...999999                                                   | x1 = 0 or -Un<br>or -In ;<br>x2 = Un or In,<br>y1 = 0 or -Un<br>or -In or 4;<br>y2 = 10 or 20 |
| Continuous output: overflow<br>service                                  | off, on                                                            | turned off**                                                                                  |
| Lower input overflow                                                    | -999999...999999                                                   | 0 or -Un or -In **                                                                            |
| Upper input overflow                                                    | -999999...999999                                                   | Un or In **                                                                                   |
| Lower output overflow                                                   | -999999...999999                                                   | 0, 3,9 **                                                                                     |
| Upper output overflow                                                   | -999999...999999                                                   | 11 V or 22 mA                                                                                 |
| Address in Modus network ***                                            | 1...247                                                            | 1                                                                                             |
| Transmission mode ***                                                   | 8n2, 8e1, 8o1, 8n1,                                                | 8n2                                                                                           |
| Baud rate ***                                                           | 4800, 9600, 19200                                                  | 9600                                                                                          |

\* - Depending on option

\*\* - In the 4...20 mA option, the overflow service is switched on, the minimal output value is set on 3.9 mA, the minimal input value is converted according to the transition characteristic.

\*\*\* - Only in the option with RS-485 output

## 6. TECHNICAL DATA

---

### Measuring Ranges

#### INPUTS:

Measuring range of the unipolar Un voltage:

- 0.5...0...100...130 V d.c.
- 1...0...250...325 V d.c.
- 2...0...400...630 V d.c.

} input resistance > 2 M $\Omega$

Measuring range of the bipolar Un voltage:

- 130...-100...100...130 V d.c.
- 325...-250...250...325 V d.c.
- 630...-400...400...630 V d.c.

} input resistance > 2 M $\Omega$

Measuring range of the bipolar In current:

- 1.3...-1.0...1.0...1.3 A d.c.      input resistance 10 m $\Omega$   $\pm 10\%$
- 6.3...-5...5...6.3 A d.c.      input resistance 2 m $\Omega$   $\pm 10\%$

#### Analog output

**current** 0(4)...20...22 mA

load resistance  $\leq$  500  $\Omega$

**voltage** 0...10...11 V

load resistance  $\geq$  500  $\Omega$

resolution 0.01% of the range

output reaction time: 200 ms

#### Serial interface

**RS-485:** address 1...247

mode: 8N2, 8E1, 8O1, 8N1

baud rate: 4.8, 9.6, 19.2 kbit/s

transmission protocol: Modbus RTU

response time: 200 ms

#### Basic conversion error

$\pm 0.2\%$  of the range

**Additional errors in rated operating conditions:**

- from ambient temperature changes (50% of the intrinsic error/10 K)

**Sustained overload:**

- 150% Un (in. 400 V,  $\pm 400$  V),
- 120% Un (other in.),
- 120% In

**Short duration overload (1 s)**

- voltage input 2 Un ( $<1000$  V)
- current input 10 In

**Rated operating conditions:**

- supply voltage 85..253 V a.c. 40..400 Hz; 90..300 V d.c. 20..40 V a.c. 40..400 Hz; 20..60 V d.c.
- ambient temperature  $-20\dots 23\dots 60^\circ\text{C}$
- storage temperature  $-25\dots +85^\circ\text{C}$
- humidity  $< 95\%$  (inadmissible vapour condensation)
- work position any

**Averaging time  
(programmable):**

- $\geq 0,2$  s (default 1 s)

**Preheating time**

- 15 minutes

**Galvanic isolation between:**

- supply – measuring input 3.2 kV d.c.
- supply – output 2 kV d.c.
- measuring input – output 3.2 kV d.c.

**Ensured protection grade  
acc. to EN 60529:**

- casing IP 40
- from the terminal side IP 20

**Overall dimensions**

- 22.5 x 100 x 120 mm

**Weight**

- 0.125 kg

**Fixing** on a 35 mm rail acc. EN 60715

**Input power** < 3 VA

**Electromagnetic compatibility:**

- noise immunity acc. to EN 61000-6-2
- noise emissions acc. to EN 61000-6-4

**Safety requirements** acc. to EN 61010 -1 standard:

- isolation between circuits: basic
- installation category: III ( for the 400 V option – category II)
- pollution grade: 2
- maximal phase-to-earth working voltage:
  - for the supply circuit: 300 V
  - for the measuring input: 600 V - category II, (300 V – cat. III)
  - for the programming input: 50 V
  - for output: 50 V
- altitude above sea level < 2000 m.



## 7. ORDERING CODES

Table 5.

| TRANSDUCER                                       | P20H - | X | X | X  | XX | X | X |
|--------------------------------------------------|--------|---|---|----|----|---|---|
| <b>Input signal:</b>                             |        |   |   |    |    |   |   |
| +/- 100 V d.c. ....                              |        |   |   | 1  |    |   |   |
| +/- 250 V d.c. ....                              |        |   |   | 2  |    |   |   |
| +/- 400 V d.c. ....                              |        |   |   | 3  |    |   |   |
| +/- 1 A d.c. ....                                |        |   |   | 4  |    |   |   |
| +/- 5 A d.c. ....                                |        |   |   | 5  |    |   |   |
| 0...100 V d.c. ....                              |        |   |   | 6  |    |   |   |
| 0...250 V d.c. ....                              |        |   |   | 7  |    |   |   |
| 0...400 V d.c. ....                              |        |   |   | 8  |    |   |   |
| <b>Output:</b>                                   |        |   |   |    |    |   |   |
| 0...20 mA ....                                   |        |   |   | 1  |    |   |   |
| 4...20 mA ....                                   |        |   |   | 2  |    |   |   |
| 0...10 V ....                                    |        |   |   | 3  |    |   |   |
| RS-485 ....                                      |        |   |   | 4  |    |   |   |
| <b>Supply:</b>                                   |        |   |   |    |    |   |   |
| 85..253 V a.c. 40..400 Hz; 90..300 V d.c. ....   |        |   |   | 1  |    |   |   |
| 20..40 V a.c. 40..400 Hz; 20..60 V d.c. ....     |        |   |   | 2  |    |   |   |
| <b>Version:</b>                                  |        |   |   |    |    |   |   |
| standard ....                                    |        |   |   | 00 |    |   |   |
| non-standard settings....                        |        |   |   | NS |    |   |   |
| custom-made* ....                                |        |   |   | XX |    |   |   |
| <b>Language:</b>                                 |        |   |   |    |    |   |   |
| Polish ....                                      |        |   |   |    | P  |   |   |
| English ....                                     |        |   |   |    | E  |   |   |
| other* ....                                      |        |   |   |    | X  |   |   |
| <b>Acceptance Tests</b>                          |        |   |   |    |    |   |   |
| without extra quality requirements ....          |        |   |   |    | 0  |   |   |
| with an extra quality inspection certificate.... |        |   |   |    | 1  |   |   |
| acc. to customer's requirements* ....            |        |   |   |    | X  |   |   |

\* after agreeing with the Manufacturer

### **Example of Order:**

The code: **P20H - 6 1 1 00 E 0** means:

**P20H** – transducer of d.c. current and d.c. voltage signals,

**6** – input signal: 0...100 V d.c.,

**1** – output: 0...20 mA,

**1** – supply: 85..253 V a.c. 40..400 Hz; 90..300 V d.c.

**00** – standard version

**E** – English language

**0** – without extra quality inspection requirements

P20H-09A  
60-006-00-00569